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We study the growth of order following a zero temperature quench in the one-dimensional XY (n=2)
and Heisenberg (n=3) models and in the two-dimensional » =4 model with a conserved order parameter
using a Langevin formalism. These systems are characterized by an absence of localized topological de-
fects (n >d). Although the structure factor S(k,t) obeys standard dynamical scaling at late times, we
show quite convincingly that S(k,t) possesses an exponential tail, violating the generalized Porod’s law.
We also find that the form of the asymptotic correlation function at small distances exhibits a striking

universality.
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There has been much interest of late in the phase or-
dering of systems with continuous symmetry, following a
quench from a high temperature disordered state [1-8].
Most numerical [7] and experimental [8] work has con-
centrated on systems possessing topological defects for
which the number of components of the order parameter,
n <d, the spatial dimension. These localized defects,
which get introduced into the system as the start of the
dynamical evolution, get ironed out as the spins order.
For these systems, the equal-time correlation function
g (r,t) and hence its Fourier transform, the structure fac-
tor S(k,t), obey the simple scaling ansatz [9] at late
times,

g(r,t)=g(r/R (1)), S(k,t)=R%t)F(kR (1)), (1

where R is the single characteristic length scale associat-
ed with the typical distance between defects. In the scal-
ing regime R ~¢!/%, where z depends on the conservation
laws governing the dynamics and the dimensions [3,4] n
and d. The scaling function g(r /R (¢)) is universal in the
sense that it is independent of the nature of the interac-
tions and initial conditions as long as they are short
ranged [10]—the form however depends nontrivially on
nandd.

How about systems which do not support stable topo-
logical defects, i.e., when n >d? Is the kinetics of phase
ordering different in such cases? Indeed for the exactly
solvable n = «, conserved O(n) model (in arbitrary d),
Coniglio and Zannetti [2] (CZ) showed that the scaling
ansatz (1) breaks down because of the existence of two
marginally different length scales—R (t)~t!/* and
[k,,()]"'~(t/Int)'/* where k,,(t) is the position of the
maximum of S (th). This results in a multiscaling form
for § (k,1)~R (0™ with ¢(x)=1—(1 —x2)%. CZ
suggested that this multiscaling behavior might be gener-
ic to the asymptotic dynamics of conserved vector order
parameters. Following the suggestion by CZ there have
been several numerical studies [11-13] in two and three
dimensions—the results in every case are inconsistent
with multiscaling and support the simple scaling ansatz

49

Eq. (1). Analytic work by Bray and Humayun (BH) [6]
using an approximate formalism, originally developed by
Mazenko [14], showed that the multiscaling form was a
specific feature of the n = 0 model and that the standard
scaling ansatz Eq. (1) was restored at any finite n. All
these studies are, however, restricted to values of n <d.
Mazenko’s formalism implicitly assumes the existence of
localized defects and analyzes the temporal behavior of
the two-point correlation function in terms of fluctua-
tions about this defect configuration. This still leaves the
question open for systems which do not admit localized de-
fects, n >d.

That the physics of n > d systems is different is indicat-
ed in the contribution of topological defect configurations
to the tail of S(k,t). An approximate calculation of
S (k,t) for a nonconserved order parameter [15] based on
a singular perturbation expansion, predicted that the
asymptotic S(k,t) has a power-law tail of the form
A(n,d)R(t)""k'"9*" for kR(t)>>1. This has been
verified by numerical simulations [7,11,12] and experi-
ments [8] on systems with n <d. For n =1, this is the
famous Porod’s law [16], long recognized as arising from
defect configurations with sharp domain walls. Recent
work [17] has explicitly shown that the k ~*" tail and
the universal amplitude 4 (n,d) can be understood as a
consequence of the existence of topological defects in the
order parameter field. Such localized defects have a core
where the order parameter profiles vanish, and only exist
for n <d. Though it is known that the existence of such
localized topological defects is responsible for the power-
law tail, there has not been a systematic study of the
dependence of the tail of S(k,t) on n and d when n >d
(see, however, Ref. [18] for nonconserved systems).

In this paper we investigate the behavior of the equal-
time correlation function of conserved order parameter
systems which do not possess localized topological de-
fects (n >d). We focus on the conserved dynamics of the
one-dimensional XY (n=2) and the Heisenberg (n =3)
models and the two-dimensional n =4 model, following
an instantaneous quench from a disordered configuration
to the zero temperature ordered phase using a Langevin
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formalism. Our main results are the following. We
demonstrate that at late times our data is inconsistent
with multiscaling and so vindicate the simple scaling an-
satz [Eq. (1)]. However, we show that for systems
without localized topological defects, S (k,?) possesses an
exponentially decaying tail, violating the generalized
Porod’s law. We find that the one-dimensional Heisen-
berg and the two-dimensional » =4 models exhibit simi-
lar features in their structure factors. On the other hand,
the one-dimensional XY model exhibits anomalous
features both in the growth exponent and in the form of
S (k,t). This gives rise to two possibilities—either (i) the
n =2, d =2 model is unique or (ii) its behavior is generic
to systems with n =d +1. If the latter is true then this
would imply that the dynamical behavior of n =d +1
systems differs from the n >d +1 systems owing to the
presence of extended topological defects in the former.
In spite of this difference, there is a universal feature
shared by all n>d systems, namely, the form of the
asymptotic correlation function as small distances is ana-
lytic and identical.

We numerically solve the Langevin equation for the
d=2, n=4 and the d=1, n=3, and n =2 models. A
zero temperature quench allows us to drop the noise term
(whose correlations are proportional to temperature).
The resulting equation for the components of the order
parameter ¢,(r,t) with a=1, . . ., n, can be written as

9

—E%‘i=—v2[v2¢a+¢a<1—¢2>] . @)
This conserves the total magnetization (integral of the or-
der parameter) and can be derived from a Ginzburg-
Landau free-energy functional,

FI)=4 [dx |=r?+ 5P +c(Ve)? |, 3)

after a suitable rescaling of the position, time, and order
parameter variables. We use the usual Euler discretiza-
tion method with a Ar=0.025 and a regular mesh size
Ar=1 to iterate Eq. (2) up to times t <¢_, =10000 on a
system of size L =1028Ar in d=1, and L =256Ar in
d =2, with periodic boundary conditions. At these late
times, we still do not see any sign of finite size effects. We
perform ten runs with different realizations of the initial
configuration of the components of the order parameter
(distributed uniformly between *0.1) and average over
these to obtain g(r,#)={4(r,7)-9(0,)) and its Fourier
transform S(k,t). We investigate the behavior of the
characteristic length scale ry(¢) obtained from the first
zero of the correlation function g (r, ).

To distinguish between standard scaling (Eq. 1) and
multiscaling, CZ suggested plotting S (k,¢) as a function
of ¢t for several but fixed values of x =k /k,,(t) where
k,,(t) is the position of the peak of S(k,#). On a log-log
scale this plot should show several parallel lines with
slope d/z if the standard scaling were to be valid,
whereas in the case of multiscaling one would see a
spread of slopes ¢(x)d /z (z is the dynamical exponent).
We find that for all three models considered here, ¢(x),
plotted against x, is clustered [19] around 1 as demanded

TABLE 1. Exponents and amplitudes of the fitting forms for
the characteristic domain size R (t), the correlation function
g (r,1), and the structure factor S (k,¢).

n d 1/z v a,(n,d)
4 2 0.27+0.01 1.7£0.1 0.54
3 1 0.26+0.01 1.7+0.1 0.98
2 1 0.17£0.01 2.7+0.3 0.78

by the scaling ansatz Eq. (1). There is no evidence of a
nontrivial ¢(x), and therefore of multiscaling. This
strongly suggests that the multiscaling phenomenon is a
singular feature of the n= o model, and that for any
finite n, standard scaling holds.

Standard scaling implies that there is a single charac-
teristic ‘“‘domain” size measured by r(¢) defined above
which scales as z!/Z at late times. The values of 1/z given
in Table I for the n =3 and n =4 systems are consistent
with the renormalization group (RG) prediction [3] of
z=4. This power-law behavior persists over a large in-
terval of times up to late times (z,,, =10000) with no
sign of finite size saturation. We note that these systems
enter the scaling regime at earlier times in comparison to
scalar order parameters. For the conserved XY model in
d =1, however, our result for 1/z (consistent with z=6)
is different from the RG prediction of z=4, but agrees
with the exponent seen in Ref [11]. At present, we do not
have a clear understanding of this anomalous slow
growth for this system, which seems to persist out to late
times (¢, =10000). We note, in passing, that an anom-
alous slow growth (z=4) has been observed [20] in the
nonconserved XY model in d =1. This can be traced to
the fact that the correlation functions depend on the ini-
tial conditions imposed on the spin variables. This intro-
duces another length scale in the problem, namely the
correlation length of the spins at the initial time. A simi-
lar feature should be responsible for the slow growth ob-
served here.

Let us now take a look at the details of the structure
factor S(k,t) at late times. Figure 1 indicates that the
large k profile of S(k,?) falls faster than any sensible
power of k, a violation of the generalized Porod’s law.
This is consistent with the claim that the power-law tail

5

45 5.0

. ‘ |in=ad=2
0= "t
4, » n=3 d=1
“ . = ) xn=2d=1
2 of N = :
o X RS
< L
A %&x
= 8 |- Xﬁx};
o
*x
-10 - j&
12 ?«
. % %
4 i | ey 1 - |

35 4.0
In (kL/277)

FIG. 1. Violation of Porod’s law: a force fit to a power law
(solid lines) of the tail of the structure factor S (k,t) gives an ex-
ponent =~ — 14 in each case.
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FIG. 2. A fit of the tail of S(k,t) to the form exp(—k") at a
late time. The values of v appear in Table I.

of S (k,t) observed in n <d systems is a result of localized
topological defects that have been injected into the sys-
tem at the start of the dynamical evolution. We find that
the scaling function F(kR(r)) [see Eq. (1)], drops to zero
exponentially, F(x)~exp(—x") for large x (see Fig. 2).
The values of v are given in Table I. We conjecture that
v=3 for all conserved n>d+1 models. The n= o re-
sult [2], F(x)~exp(—x*) for large x, is clearly singular in
n —more evidence that the n = o« model is pathological.
The scaling function F(x) for the n =2, d =1 system
shows a similar exponential decay as before but with a v
consistent with 3 (Table I). The small k behavior of
S(k,t) also exhibits interesting features. For the con-
served scalar order parameter, the k* dependence of
S(k,t) for small k follows from essentially dimensional
arguments [21] and the assumption that u, ~O(1),
k —0 (u; is the Fourier component of the chemical po-
tential). These arguments should go through unaltered
for vector order parameters. Our numerical simulations
for the n =3,4 systems are indeed consistent with this k*
behavior. The n =2 system is again anomalous—a fit to
the S(k,t) data shows a k%>7%03 dependence at small k.
It is clear that the behavior of the n =2,d =1 model is
qualitatively different from the other two models we have
studied.

After highlighting the differences between the
n=d +1 and the n >d + 1 models, we now show a strik-
ing ‘“‘superuniversal” feature shared by all three models
we study. We find that the functional form of the scaling
function g(r/t1/?) for r /t'/?<<1 is the same for all three
models and conjecture that this should be true for all
n>d. As shown in Fig. 3, g(x)~exp[ —a,(n,d)x?] for
small x up to x =0.6, where the universal coefficients [22]
a,(n,d) appear in Table I. This behavior of the correla-
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FIG. 3. A fit of g(x) for small x, to the form

exp[ —a,(n,d)x?] where x =r/t!/2. The values of a,(n,d) are
given in Table 1.

tion function is distinct from the n <d systems, where
g(x) is nonanalytic at small x, with the leading small-x
singularities going as 1—x" for odd n and 1—x"Inx for
even n. It seems reasonable that the extended defects of
the n =2 model do not make their presence felt at small x
(if it does at all). We would expect that the asymptotic
form of g(x), for very small x, is insensitive to the con-
servation of the order parameter. Not surprisingly then,
this form is precisely what is obtained in numerical simu-
lations [10,20] of the corresponding nonconserved sys-
tems.

In conclusion, we point out that in the absence of local-
ized defects for the n > d systems, the only elementary ex-
citations are spin-wave-like. This is responsible for the
exponential correlations seen in these systems. We have
provided sufficient numerical evidence to indicate that,
unlike for the nonconserved case, the 1/n expansion fails
completely for conserved systems, since the n=c con-
served model is singular. One thus needs an exactly solv-
able nonpathological conserved model about which a sys-
tematic perturbation expansion can be performed. A
proper theoretical understanding of the numerical results
just presented for n >d systems should be an interesting
task for the future.
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